Special

Office of Justice Programs ® Partnerships for Safer Communities ® www.ojp.usdoj.gov

When two implementations of a given specification behave the same to client
applications, then the two implementations can interoperate. For the purposes of this
document, we consider two GSC-1S implementations to be interoperable if they have
each passed the NIST conformance test system.

2 Architecture of the GSC-IS

The Government Smart Card Interoperability Specification describes an architectural
model that includes the following components:

The Basic Services Interface (BSI), a core set of smart card services at the
Application Programming Interface (API) layer between client applications and
the smart card service provider modules.

The Extended Services Interfaces (XSI), which define additional API functions
specific to particular implementations. These additional functions are non-
interoperable, and are not specified in the GSC-IS.

The Card Edge Interface (CEI), which defines standard, default sets of
interoperable Application Protocol Data Units (APDUs). The ADPUs are a subset
of those specified in the ISO 7816 standards. These default sets of ADPUs support
both virtual machine and file system smart cards.

The GSC Data Models, which define the set of containers and data elements
within each container on cards supporting that data model. The GSC-IS defines
two data models: the GSC data model and the Department of Defense Common
Access Card (CAC) data model. The GSC data model was developed for version
1.0 of the GSC-IS.

The Card Capabilities Container (CCC), one of the required containers present on
GSC-IS smart cards. The purpose of the CCC is to describe the differences
between the given card’s native APDU set and the default set defined by the GSC-
IS CEI.

3 GSC-IS Conformance Clause

The conformance clause specified in the GSC-IS specifies conformance conditions for
smart card service provider modules (SPMs) and smart cards themselves:

An SPM implementation that claims conformance to the GSC-IS must implement
each of the following:

- The Architectural Model, as defined in Chapter 2

-2-

— The Access Control Model, as defined in Chapter 3

- The Basic Services Interface, as defined in Chapter 4

— The Virtual Card Edge Interface, as defined in Chapter 5
— The Card Capabilities Container, as defined in Chapter 6
— Container Naming, as defined in Chapter 7

— Support for both of the Container Data Models defined in Chapter 8 and the
appropriate Appendices

— At least one language binding for BSI Services, as defined in the Appendices.

e A smart card that claims conformance to the GSC-IS must support each of the
following:

- The Architectural Model as it relates to smart cards, i.e., as defined in sections 1, 4,
5, and 6 of Chapter 2

— The Access Control Model, as defined in Chapter 3

— Either the file system card edge interface or the VM card edge interface, as defined
in Chapter 5

— The Card Capabilities Container, as defined in Chapter 6
— Container Naming, as defined in Chapter 7

— One of the Container Data Models defined in Chapter 8 and the appropriate
Appendix.

4 Conformance Requirements for GSC-IS

The conformance requirements for implementations of the GSC-IS are defined at two
levels: the service call level and the card command (APDU) level.

The service call level is concerned with functional calls required to obtain various
services from the card. The GSC-IS addresses interoperability at this level by defining
the Basic Service Interface API.

The card command level is concerned with the exact APDUSs that are sent to the card to
obtain the required service. The GSC-IS addresses interoperability at this level by
defining the Card Edge Interface APl. The CEI consists of a card-independent, standard
set of APDUs implemented by the Service Provider Module,

The conformance requirements for smart cards themselves include the mandatory Card
Capability Container. The CCC is a file which contains rules and procedures for

Level O
Minim um

Level 2

Exam ple of a Levels structure

Profiles constitute a less rigidly constructed collection of sets of functionality. Each
profile must contain the minimal set, but otherwise can partially intersect, or be disjoint
from, other profiles. Profiles may be designed for particular applications or user

communities.

Example of Profile Structure

It is possible that a profile structure can be combined with a level structure:

